Низкие частоты диапазон в динамиках. Высокочастотные колонки-твитеры: под силу даже самые высокие ноты. Обозначение динамика на схеме

Для начала расставим все точки над "i" и разберёмся в терминологии.

Электродинамический громкоговоритель, динамический громкоговоритель, динамик, динамическая головка прямого излучения – это разнообразные названия одного и того же прибора служащего для преобразования электрических колебаний звуковой частоты в колебания воздуха, которые и воспринимаются нами как звук.

Звуковые динамики или по-другому динамические головки прямого излучения вы не раз видели. Они активно применяются в бытовой электронике. Именно громкоговоритель преобразует электрический сигнал на выходе усилителя звуковой частоты в слышимый звук.

Стоит отметить, что КПД (коэффициент полезного действия) звукового динамика очень низкий и составляет около 2 – 3%. Это, конечно, огромный минус, но до сих пор ничего лучше не придумали. Хотя стоит отметить, что кроме электродинамического громкоговорителя существуют и другие приборы для преобразования электрических колебаний звуковой частоты в акустические колебания. Это, например, громкоговорители электростатического, пьезоэлектрического, электромагнитного типа, но широкое распространение и применение в электронике получили громкоговорители электродинамического типа.

Как устроен динамик?

Чтобы понять, как работает электродинамический громкоговоритель, обратимся к рисунку.

Динамик состоит из магнитной системы – она расположена с тыльной стороны. В её состав входит кольцевой магнит . Он изготавливается из специальных магнитных сплавов или же магнитной керамики. Магнитная керамика – это особым образом спрессованные и «спечённые» порошки, в составе которых присутствуют ферромагнитные вещества – ферриты. Также в магнитную систему входят стальные фланцы и стальной цилиндр, который называют керном . Фланцы, керн и кольцевой магнит формируют магнитную цепь.

Между керном и стальным фланцем имеется зазор, в котором образуется магнитное поле. В зазор, который очень мал, помещается катушка. Катушка представляет собой жёсткий цилиндрический каркас, на который намотан тонкий медный провод. Эту катушку ещё называют звуковой катушкой . Каркас звуковой катушки соединяется с диффузором – он то и «толкает» воздух, создавая сжатия и разряжения окружающего воздуха – акустические волны.

Диффузор может выполняться из разных материалов, но чаще его делают из спрессованной или отлитой бумажной массы. Технологии не стоят на месте и в ходу можно встретить диффузоры из пластмассы, бумаги с металлизированным покрытием и других материалов.

Чтобы звуковая катушка не задевала за стенки керна и фланец постоянного магнита её устанавливают точно в середине магнитного зазора с помощью центрирующей шайбы . Центрирующая шайба гофрирована. Именно благодаря этому звуковая катушка может свободно двигаться в зазоре и при этом не касаться стенок керна.

Диффузор укреплён на металлическом корпусе – корзине . Края диффузора гофрированы, что позволяет ему свободно колебаться. Гофрированные края диффузора формируют так называемый верхний подвес , а нижний подвес – это центрирующая шайба.

Тонкие провода от звуковой катушки выводятся на внешнюю сторону диффузора и крепятся заклёпками. А с внутренней стороны диффузора к заклёпкам крепится многожильный медный провод. Далее эти многожильные проводники припаиваются к лепесткам, которые закреплены на изолированной от металлического корпуса пластинке. За счёт контактных лепестков, к которым припаяны многожильные выводы звуковой катушки, динамик подключается к схеме.

Как работает динамик?

Если пропустить через звуковую катушку динамика переменный электрический ток, то магнитное поле катушки будет взаимодействовать с постоянным магнитным полем магнитной системы динамика. Это заставит звуковую катушку либо втягиваться внутрь зазора при одном направлении тока в катушке, либо выталкиваться из него при другом. Механические колебания звуковой катушки передаются диффузору, который начинает колебаться в такт с частотой переменного тока, создавая при этом акустические волны.

Обозначение динамика на схеме.

Условное графическое обозначение динамика имеет следующий вид.

Рядом с обозначением пишутся буквы B или BA , а далее порядковый номер динамика в принципиальной схеме (1, 2, 3 и т.д.). Условное изображение динамика на схеме очень точно передаёт реальную конструкцию электродинамического громкоговорителя.

Основные параметры звукового динамика.

Основные параметры звукового динамика, на которые следует обращать внимание:

    Но кроме активного сопротивления звуковая катушка обладает ещё и реактивным сопротивлением. Реактивное сопротивление образуется потому, что звуковая катушка, это, по сути, обычная катушка индуктивности и её индуктивность оказывает сопротивление переменному току. Реактивное сопротивление зависит от частоты переменного тока.

    Активное и реактивное сопротивление звуковой катушки образует полное сопротивление звуковой катушки. Оно обозначается буквой Z (так называемый, импеданс ). Получается, что активное сопротивление катушки не меняется, а реактивное сопротивление меняется в зависимости от частоты тока. Чтобы внести порядок реактивное сопротивление звуковой катушки динамика измеряют на фиксированной частоте 1000 Гц и прибавляют к этой величине активное сопротивление катушки.

    В итоге получается параметр, который и называется номинальное (или полное) электрическое сопротивление звуковой катушки. Для большинства динамических головок эта величина составляет 2, 4, 6, 8 Ом. Также встречаются динамики с полным сопротивлением 16 Ом. На корпусе импортных динамиков, как правило, указывается эта величина, например, вот так – или 8 Ohm .

    Стоит отметить тот факт, что полное сопротивление катушки где-то на 10 – 20% больше активного. Поэтому определить его можно достаточно просто. Нужно всего лишь измерить активное сопротивление звуковой катушки омметром и увеличить полученную величину на 10 – 20%. В большинстве случаев можно вообще учитывать только чисто активное сопротивление.

    Номинальное электрическое сопротивление звуковой катушки является одним из важных параметров, так как его необходимо учитывать при согласовании усилителя и нагрузки (динамика).

    Диапазон частот – это полоса звуковых частот, которые способен воспроизвести динамик. Измеряется в герцах (Гц). Напомним, что человеческое ухо воспринимает частоты в диапазоне 20 Гц – 20 кГц. И, это только очень хорошее ухо:).

    Никакой динамик не способен точно воспроизвести весь слышимый частотный диапазон. Качество звуковоспроизведения будет всё-равно отличаться от того, что требуется.

    Поэтому слышимый диапазон звуковых частот условно разделили на 3 части: низкочастотную (НЧ ), среднечастотную (СЧ ) и высокочастотную (ВЧ ). Так, например, НЧ-динамики лучше всего воспроизводят низкие частоты – басы, а высокочастотные – «писк» и «звон» – их поэтому и называют пищалками. Также, есть и широкополосные динамики. Они воспроизводят практически весь звуковой диапазон, но качество воспроизведения у них среднее. Выигрываем в одном – перекрываем весь диапазон частот, проигрываем в другом – в качестве. Поэтому широкополосные динамики встраивают в радиоприёмники, телевизоры и прочие устройства, где порой не требуется получить высококачественный звук, а нужна лишь чёткая передача голоса и речи.

    Для качественного воспроизведения звука НЧ, СЧ и ВЧ-динамики объединяются в едином корпусе, снабжаются частотными фильтрами. Это акустические системы. Так как каждый из динамиков воспроизводит только свою часть звукового диапазона, то суммарная работа всех динамиков значительно увеличивает качество звука.

    Как правило, низкочастотные динамики рассчитаны на воспроизведение частот от 25 Гц до 5000 Гц. НЧ-динамики обычно имеют диффузор большого диаметра и массивную магнитную систему.

    Динамики СЧ рассчитаны на воспроизведение полосы частот от 200 Гц до 7000 Гц. Габариты их чуть меньше НЧ-динамиков (зависит от мощности).

    Высокочастотные динамики прекрасно воспроизводят частоты от 2000 Гц до 20000 Гц и выше, вплоть до 25 кГц. Диаметр диффузора у таких динамиков, как правило, небольшой, хотя магнитная система может быть достаточно габаритная.

    Номинальная мощность (Вт) – это электрическая мощность тока звуковой частоты, которую можно подвести к динамику без угрозы его порчи или повреждения. Измеряется в ваттах (Вт ) и милливаттах (мВт ). Напомним, что 1 Вт = 1000 мВт. Подробнее о сокращённой записи числовых величин можно прочесть .

    Величина мощности, на которую рассчитан конкретный динамик, может быть указана на его корпусе. Например, вот так – 1W (1 Вт).

    Это значит, что такой динамик можно легко использовать совместно с усилителем, выходная мощность которого не превышает 0,5 – 1 Вт. Конечно, лучше выбирать динамик с некоторым запасом по мощности. На фото также видно, что указано номинальное электрическое сопротивление – (4 Ом).

    Если подать на динамик мощность большую той, на которую он рассчитан, то он будет работать с перегрузкой, начнёт «хрипеть», искажать звук и вскоре выйдет из строя.

    Вспомним, что КПД динамика составляет около 2 – 3%. А это значит, что если к динамику подвести электрическую мощность в 10 Вт, то в звуковые волны он преобразует лишь 0,2 – 0,3 Вт. Довольно немного, правда? Но, человеческое ухо устроено весьма изощрённо, и способно услышать звук, если излучатель воспроизводит акустическую мощность около 1 – 3 мВт на расстоянии от него в несколько метров. При этом к излучателю – в данном случае динамику – нужно подвести электрическую мощность в 50 – 100 мВт. Поэтому, не всё так плохо и для комфортного озвучивания небольшой комнаты вполне достаточно подвести к динамику 1 – 3 Вт электрической мощности.

Это всего лишь три основных параметра динамика. Кроме них ещё есть такие, как уровень чувствительности, частота резонанса, амплитудно-частотная характеристика (АЧХ), добротность и др.

При создании в автомобиле качественной аудиосистемы необходимо позаботиться о воспроизведении всех частот звукового диапазона. Это достигается применением различных типов динамиков: низкочастотных, среднечастотных и высокочастотных. Здесь поговорим о высокочастотном звене аудиосистемы — динамиках, которые часто называются твитерами или «пищалками».

Назначение высокочастотных головок («пищалок»)

Построить высококачественную автомобильную аудиосистему на основе двух динамиков невозможно — в силу конструктивных особенностей одна головка громкоговорителя не может воспроизвести сразу все частоты звукового диапазона (от 20 до 20000 Гц). Особенно страдает высокочастотная часть диапазона: динамики неплохо воспроизводят низкие и средние частоты, но высокие частоты теряются — это приводит к общему снижению качества воспроизведения, музыкальная сцена становится «бесплотной», а прослушивание музыкальных композиций просто не доставляет удовольствия. Как решить эту проблему?

Решение есть — необходимо доверить воспроизведение высоких частот специальным высокочастотным динамикам. Такие динамики получили название «пищалок» или твитеров , что хорошо отражает их суть.

Обычно твитеры для автомобильных аудиосистем выполнены в виде компактных колонок (диаметром буквально три-пять сантиметров), которые можно удобно разместить на передней панели или передних стойках. Также высокочастотные динамики входят в состав коаксиальных акустических систем, однако принципиально они ничем не отличаются от твитеров, продающихся отдельно.

Разновидности и принцип действия ВЧ головок

Воспроизведение высоких частот имеет свои особенности, поэтому сегодня существует большое разнообразие «пищалок», причем очень часто в их конструкциях находят применение те решения, которые практически не используются в СЧ и, тем более, в НЧ динамиках. Понять причину этого нетрудно.

Условно высокочастотный диапазон начинается с частот 3-5 кГц, и на 4 кГц длина волны составляет порядка 8,5 см, а на максимальной частоте, доступной человеческому слуху (20 кГц) длина волны составляет и вовсе 1,7 см. Значит, что для воспроизведения таких частот излучающее устройство громкоговорителя должно иметь небольшие габариты, и при этом обладать очень маленькой инерцией (то есть, быть очень легким) — только так это устройство можно заставить колебаться с частотой в единицы и десятки килогерц.

Так что независимо от типа и устройства, все ВЧ головки имеют небольшие габариты (обычно 1-2 дюйма, то есть, не более 5 см) и малую массу.

Твитеры могут быть построены на различных принципах, они бывают следующих типов:

  • Динамические (электродинамические, обычные динамики);
  • Пьезоэлектрические (звук излучается пьезоэлементом, на который подается ток звуковой частоты);
  • Конденсаторные (звук излучается одной из обкладок конденсатора, для работы на обкладку необходимо подавать постоянный ток высокого напряжения, поэтому такой тип твитеров в автомобилях не используется);
  • Электретные (то же, что и конденсаторный твитер, но обкладка уже заряжена, поэтому не нуждается в источнике постоянного тока);
  • Ленточные (звук излучается гофрированной металлической лентой, помещенной между двумя магнитами);
  • Изодинамические (звук излучается мембраной с металлизированными токопроводящими дорожками, помещенной между двумя перфорированными пластинами с рядами тонких магнитов — такой «сэндвич» излучает звук в обе стороны);
  • Ортодинамические (то же, что и изодинамический, но мембрана, пластины и магниты имеют круглую форму, сейчас такие твитеры довольно популярны в некоторых кругах любителей автозвука).

На сегодняшний день наибольшее распространение получили «пищалки » электродинамического типа, то есть — обычные динамики, но только малого размера и особой конструкции. Другие типы твитеров в автомобильных аудиосистемах находят очень ограниченное применение, поэтому поговорим здесь именно о головках электродинамического типа.

Устройство твитера

Основу ВЧ-головки составляет катушка с проводником, помещенная в зазор между кольцевым магнитом и керном. Катушка жестко связана со звукоизлучающим устройством — мембраной, которая обычно имеет полусферическую (купольную) форму. При подаче тока звуковой частоты на катушку вокруг нее возникает магнитное поле, которое взаимодействует с магнитным полем магнита, и поэтому начинает двигаться вдоль керна в такт с изменением тока — вот так и возникает звук, который излучается мембраной.

Купольная форма мембраны обусловлена тем, что звуковые волны высокой частоты имеют острую направленность, а полусферическая мембрана позволяет расширить угол распространения звука. Нередко в ВЧ-головках для расширения диаграммы направленности перед мембраной устанавливается специальный конус — рассекатель.

Мембраны у современных твитеров могут изготавливаться из следующих материалов:

  • Бумага (самый дешевый вариант, используется нечасто);
  • Шелк (оптимальный вариант по цене и качеству, сегодня получит наибольшее распространение, шелк пропитывается особым составом, повышающим жесткость купола);
  • Алюминий, титан (тонкие металлические мембраны обеспечивают высокое качество, но при этом дороги и обладают рядом недостатков, которые можно превратить в достоинства только при профессиональной постройке аудиосистемы).

Что касается магнитов, то они чаще всего мощные неодимовые, хотя у простых твитеров низшего ценового диапазона магниты тоже самые простые.

В конце заметим, что сейчас распространены два типа твитеров, отличных по конструкции:

  • Головки, помещенные в простой корпус — обычно плоские или слегка выпуклые твитеры малых габаритов;
  • Головки, помещенные в рупорный конус — имеют увеличенные габариты (особенно длину), благодаря рупору обеспечивается необходимая диаграмма направленности.

Рупорные твитеры дороже обычных, поэтому чаще всего находят применение в профессиональных аудиосистемах высокого уровня.

Характеристики твитеров

Из характеристик ВЧ-головок наибольшее значение имеют следующие:

  • Частотный диапазон;
  • Чувствительность;
  • Номинальное сопротивление (импеданс);
  • Мощность;
  • Калибр.

Частотный диапазон. Именно эта характеристика самая важная для твитера, она показывает, какие частоты способна воспроизводить головка, а значит, в каких системах ее можно применять. Обычно диапазон воспроизводимых частот лежит в пределах 2-20 кГц, однако чаще всего нижняя граница у твитеров начинается на уровне 2,5-3 кГц, а верхняя граница может достигать 22-30 кГц.

Чувствительность. В силу особенностей конструкции (легкая мембрана, малые габариты) «пищалки» обладают очень высокой чувствительностью по сравнению с обычными динамиками — она лежит в пределах 102-109 дБ. Это значит, что даже при малых мощностях они обеспечивают необходимый уровень громкости. Однако самые дешевые твитеры имеют чувствительность на уровне 92-96 дБ, что нужно учитывать при создании аудиосистемы.

Импеданс. Сопротивление катушки твитера может иметь те же значения, что и импеданс других динамиков — 2, 3, 4, 6, 8 и 16 Ом.

Мощность. Этот параметр не так важен для ВЧ-головок, как для СЧ и НЧ — для обеспечения нормальной музыкальной сцены на высоких частотах достаточно мощностей, практически на порядок меньших, чем для СЧ и НЧ. Но, несмотря на это, рынок предлагает твитеры мощностью 50-80 Вт (хотя в большинстве случаев не соответствует действительности).

Калибр. Твитеры имеют малые габариты, и чаще всего встречаются калибры 1, 1,5 и 2 дюйма, то есть — 2,5, 3,8 и 5 см.

Выбирать твитеры в автомобиль можно по многим параметрам, однако наиболее важное значение имеют три из них.

Диапазон воспроизводимых частот — нижняя граница ВЧ-головки и верхняя граница СЧ (или СЧ-НЧ) динамика должны пересекаться. Например, если верхняя граница воспроизводимых частот среднечастотного динамика лежит на уровне 4,5 кГц, то твитер лучше взять с нижней границей 3-4 кГц или даже ниже — это гарантирует, что аудиосистема будет воспроизводить весь спектр частот без провалов.

Импеданс — необходимо приобретать твитеры, номинальное сопротивление которых равно выходному сопротивлению кроссовера. Если же твитеры будут просто подключены параллельно основным колонкам, то их импеданс должен быть выше, либо можно использовать мощный резистор на единицы Ом (ведь при параллельном подключении динамиков их общее сопротивление уменьшается согласно формуле (R1+R2)/2).

Мощность — номинальная мощность твитеров должна быть не меньше выходной мощности усилителя автомагнитолы.

Выбор твитеров по остальным параметрам может отвечать личным предпочтениям, финансовым возможностям и возможностям автомобиля, так как они не играют такой роли, как озвученные выше технические характеристики.

Особенности установки твитеров

Грамотная установка ВЧ-головок — одна из самых сложных задач при построении автомобильной аудиосистемы. Даже многострадальный сабвуфер поставить и заставить работать проще, а причина кроется в особенностях волн высокочастотной части звукового диапазона:

  • Из-за малой длины (единицы сантиметров) волны хорошо отражаются от препятствий;
  • Из-за остронаправленной диаграммы твитеров полноценная звуковая сцена формируется в ограниченном пространстве, и она очень зависит от местоположения и направления твитеров.

Отражение звуковых волн чревато негативным эффектом — образованием стоячих волн внутри салона с пиками максимума и минимума громкости. Если волны накладываются синфазно, звук усиливается, и высокие частоты «выпирают» из общей сцены, если волны накладываются в противофазе, то высокие частоты фактически пропадают. Поэтому твитеры необходимо установить так, чтобы свести к минимуму возможность ненужных отражений звука и формирования стоячих волн.

Как показывает практика, оптимальное положение ВЧ-головок — на передних стойках. В этом случае удается обеспечить расстояние до ближайших предметов (окон) более 5 см, чего достаточно для решения проблемы стоячих волн. Что касается пространственного положения твитеров, то оно должно удовлетворять следующим условиям:

  • В вертикальной плоскости твитеры должны располагаться на уровне рта слушателя;
  • В горизонтальной плоскости твитеры должны располагаться так, чтобы их оси пересекались примерно между водительским и пассажирским сиденьем.

Однако куда более сложен вопрос не о том, как установить твитеры , а о том, как их подключить к автомагнитоле. Здесь возможны три варианта:

  • Подключение ВЧ-головок параллельно основным НЧ-СЧ динамикам без дополнительных деталей;
  • Подключение твитеров к колонкам через простейший фильтр;
  • Подключение твитеров через пассивные кроссоверы.

В первом случае на «пищалку» будет подаваться весь звуковой спектр, но из-за особенностей конструкции воспроизводиться будет только высокочастотный диапазон. Это далеко не лучший вариант, так как головка будет перегружена, ей придется работать в сложном режиме. Поэтому лучше использовать фильтры (кроссоверы), отсекающие НЧ-СЧ составляющую, и подающие на твитер только высокие частоты.

В случае применения кроссовера очень важно грамотно подобрать частоту среза — здесь необходимо выбрать такую частоту, чтобы она не выходила за нижнюю границу диапазона воспроизводимых частот твитера, иначе некоторая часть спектра будет просто потеряна. Сегодня на рынке можно найти кроссоверы с частотой среза от 1,8 до 5 кГц, но чаще эта частота лежит на уровне 2,5-3 кГц.

Необходимо отметить, что в пассивных кроссоверах часть энергии тока звуковой частоты теряется, а значит, на колонки подается меньшая мощность. Здесь как раз и выручает высокая чувствительность твитеров, благодаря которой потеря мощности практически незаметна.

При грамотной установке и подключении твитеров в автомобиле будет создана качественная аудиосистема, которая сможет доставить удовольствие от прослушивания музыки.

Эксплуатация твитеров мало чем отличается от эксплуатации других динамиков аудиосистемы, здесь нужно придерживаться нескольких несложных правил:

  • Новые твитеры необходимо «прогреть» — погонять со все возрастающей громкостью в течение 20-30 часов (с перерывами) с использованием разной музыки. Во время прогрева ВЧ-головки выйдут на рабочий режим, в них притрутся детали, «разомнутся» центрирующая шайба, подвес и другие компоненты;
  • Твитеры менее чувствительны к подаче сигнала высокой мощности, однако все равно не рекомендуется включать аудиосистемы на большой громкости — лучше сначала включить музыку на малой громкости, а потом довести ее до необходимого уровня;
  • Твитеры необходимо оберегать от механических воздействий (их положение способствует частым ударам различными предметами, и просто хватанию руками), жидкостей и т.д.

При бережном отношении к «пищалкам» и остальным компонентам, аудиосистема прослужит долго, и в каждой поездке будет качественно выполнять свои функции. А большего от нее и не требуется.

Существует много различных типов звукоизлучателей, однако наиболее распространены излучатели электромагнитного типа, или как их ещё называют, динамики.

Динамики являются основными конструктивными элементами акустических систем (АС). К сожалению, один динамик не способен воспроизвести весь слышимый диапазон частот. Поэтому для полнодиапазонного воспроизведения в акустических системах применяется несколько динамиков, где каждый рассчитан на воспроизведение своей полосы частот. Принцип работы низкочастотных (НЧ) и высокочастотных (ВЧ) динамиков одинаковый, отличия заключаются в реализации отдельных конструктивных элементов.

Принцип работы динамика основан на взаимодействии переменного магнитного поля создаваемого током, протекающим по проводу магнитной катушки, с магнитным полем постоянного магнита.

Несмотря на сравнительную простоту конструкции, динамики, предназначенные для работы в высококачественных акустических системах, имеют большое количество важных параметров, от которых зависит конечное звучание акустической системы.

Самым главным показателем, характеризующим динамик, является полоса воспроизводимых частот. Она может быть указана в виде пары значений (нижней граничной и верхней граничной частоты), или приведена в виде амплитудно-частотной характеристики (АЧХ). Второй вариант является более информативным. АЧХ представляет собой графическую зависимость уровня звукового давления, создаваемого динамиком на расстоянии 1 метр по рабочей оси, от частоты. АЧХ позволяет оценить частотные искажения, вносимые динамиком в исходный сигнал, а также, в случае использования динамика в составе многополосной системы – выявить оптимальное значение частоты раздела разделительного фильтра. Именно АЧХ позволяет классифицировать динамик как низкочастотный, среднечастотный или высокочастотный.

Выбор низкочастотного динамика

Для НЧ динамиков, помимо АЧХ, существенной группой показателей являются так называемые Тиль-Смолл параметры. На их основе производится расчёт параметров акустического оформления для динамика (корпуса акустической системы). Минимальный набор параметров резонансная частота - fs, полная добротность - Qts, эквивалентный объём - Vas.

Тиль-Смолл параметры описывают поведение динамика в области поршневого действия (ниже 500Гц), рассматривая его как колебательную систему. Совместно с акустическим оформлением (АО), динамик представляет собой фильтр высоких частот (ФВЧ), что позволяет при расчётах использовать математический аппарат, позаимствованный из теории фильтров.

Оценка значений Тиль-Смолл параметров динамика, и в первую очередь, полной добротности Qts, позволяет судить о целесообразности применения динамика в акустических системах с тем или иным типом акустического оформления (АО). Для АС с акустическим оформлением фазоинверсного типа в основном используются динамики со значением полной добротности до 0,4. Стоит отметить, что фазоинверсные системы являются наиболее требовательными, с точки зрения проектирования, по-сравнению с АС, имеющими закрытое и открытое АО. Данная конструкция чувствительна к ошибкам, допущенным в расчётах и при изготовлении корпуса, а также при использовании недостоверных значений параметров НЧ динамика.

При выборе НЧ динамика большую роль играет параметр Xmax. Xmax показывает максимально допустимое смещение диффузора, при котором в зазоре магнитной цепи динамика сохраняется постоянное количество витков провода звуковой катушки (см. рис. ниже).

Для сателлитных акустических систем подойдут динамики с Xmax=2-4мм. Для сабвуферов следует применять динамики с Xmax=5-9мм. При этом сохраняется линейность преобразования электрических колебаний в акустические на больших мощностях (и, соответственно, больших амплитудах колебаний), что проявляется в более эффективном излучении низких частот.

Если вы приняли решение об изготовлении акустической системы «своими руками», перед вами неизбежно встанет вопрос о выборе фирменных комплектующих, в частотности динамиков. Не имея опыта эксплуатации продукции различных производителей иногда сложно сделать оптимальный выбор. Приходится руководствоваться множеством факторов, сравнивать по многим параметрам, не только имеющих отношение к паспортным характеристикам. Динамики АКТОН удачно дополнят вашу АС, поскольку, помимо высокого качества, обладают рядом преимуществ:

  • имеют оптимальное соотношение цена/качество в своём сегменте;
  • динамики специально разработаны для профессиональных АС, используемых для озвучивания социально-культурных мероприятий;
  • для динамиков разработана документация по изготовлению корпусов;
  • взаимодействие потребителя с производителем осуществляется напрямую без посредников, что позволяет избежать проблем с доступностью любых запчастей и комплектующих;
  • информационная поддержка по вопросам конструирования АС;
  • высокая надёжность работы динамиков АКТОН.

С модельным рядом динамиков АКТОН вы можете ознакомиться .

Выбор высокочастотного динамика

При выборе ВЧ динамика, по АЧХ определяют нижнюю частоту воспроизводимого им диапазона. Необходимо чтобы полоса частот ВЧ динамика несколько перекрывала полосу частот НЧ динамика.

Некоторые ВЧ динамики предназначены для работы совместно с рупором. В отличие от ВЧ динамиков прямого излучения (или, как их называют, твиттеров), рупорные ВЧ динамики, благодаря свойствам рупора имеют более низкую граничную частоту воспроизводимого звукового диапазона. Нижняя граничная частота такого ВЧ динамика может составлять примерно 2000-3000Гц, что позволяет во многих случаях отказаться от СЧ динамика в АС.

Из-за конструктивных особенностей, ВЧ динамики, как правило, имеют более высокую чувствительность, по сравнению с НЧ динамиками. Поэтому на этапе проектирования фильтра , в нём предусматривают цепь аттенюатора (подавителя), необходимого для понижения избыточного излучения, который приводит значения чувствительностей ВЧ и НЧ динамиков к одинаковому уровню.

При выборе ВЧ динамика важно учитывать его мощность, которая выбирается исходя из мощности НЧ динамика. При этом мощность ВЧ динамика принимается ниже мощности НЧ динамика, что вытекает из анализа спектральной плотности звукового сигнала, соответствующей розовому шуму (имеющему спад в сторону высоких частот). Для практического расчёта мощности, рассеиваемой на ВЧ динамике в АС с частотой раздела 3-5кГц, можно воспользоваться калькулятором на нашем сайте.

Напомним, ВЧ динамики недопустимо использовать без фильтра высоких частот (ФВЧ), ограничивающего проникновение низкочастотной части спектра.

Факторы повреждения динамиков

В случае наступления нештатных режимов работы возможны механические и электрические повреждения динамиков. Механические повреждения возникают, когда амплитуда колебаний диффузора превышает допустимую амплитуду, которая зависит от механических свойств элементов подвижной системы. Наиболее критичная частотная зона для таких повреждений находится вблизи частоты механического резонанса динамика и ниже, т.е. там, где амплитуда колебаний максимальна. Электрические повреждения возникают в результате необратимого перегрева звуковой катушки. Наиболее критичная полоса частот для повреждений такого рода соответствует полосе, находящейся вблизи электро-механического резонанса динамика. Повреждения обоих видов наступают в результате превышения максимально допустимой электрической мощности, подводимой к динамику. Для того чтобы избежать таких последствий величина максимальной мощности нормируется.

Есть несколько стандартов, пользуясь которыми производители нормируют мощности своих изделий.Наиболее близким с точки зрения реальных условий в случае использования акустической системы для озвучивания массовых мероприятий можно привести стандарт AES. Мощность согласно этому стандарту определяется как квадрат среднеквадратического значения напряжения в определённой полосе розового шума, который динамик способен выдерживать в течении не менее 2-х часов, делённое на значение минимального импеданса Zmin. Стандарт регламентирует нахождение динамика в «свободном воздухе» без корпуса. Некоторые производители при испытаниях помещают динамик в корпус, приближая таким образом условия его работы к реальным условиям, что с их точки зрения, приводит к более объективным результатам. Известное значение мощности динамика служит ориентиром при выборе усилителя, мощность которого должна соответствовать значению мощности AES динамика.

Стоит заметить, что реальное значение мощности, подведённой к динамику, с трудом поддаётся оценке без проведения специальных измерений и может отличаться в широких пределах даже при одинаковой установке регулятора уровня громкости на устройствах звукового тракта.

На это могут оказывать влияние многие факторы, такие как:

  • Спектр воспроизводимого сигнала (музыкальный жанр, частотный и динамический диапазон музыкального произведения, преобладающие музыкальные инструменты);
  • Характеристики пассивных фильтрующих цепей и активных кроссоверов, ограничивающих спектр исходного сигнала, поступающего на динамики;
  • Использование эквалайзера и других устройств частотной коррекции в звуковом тракте;
  • Режим работы усилителя (появление нелинейных искажений и клиппирования);
  • Конструкция корпуса акустической системы;
  • Неисправность усилителя (возниконовение постоянной составляющей в спектре усиленного сигнала)

Следующие меры повышают надёжность эксплуатации акустических систем:

  • Понижение верхней граничной частоты работы НЧ динамика, используя фильтр низких частот (ФНЧ). В этом случае ограничивается часть спектра сигнала, которая вносит существенный вклад в разогрев катушки;
  • Ограничение полосы частот ниже частоты настройки фазоинвертора, используя цепи LOW-PASS (фильтр высоких частот). Данная мера ограничивает амплитуду колебаний диффузора за пределами рабочего диапазона АС со стороны низких частот, предотвращая механические повреждения НЧ динамика;
  • Настройка ФВЧ ВЧ динамика на более высокую частоту;
  • Конструирование корпусов АС, обеспечивающих наилучшие условия естественной конвекции динамиков;
  • Исключение работы АС с усилителем, работающим в режиме нелинейных искажений, клиппирования;
  • Предотвращение возникновения громких коммутационных щелчков, «заводки» микрофона;
  • Использование лимитера в звуковом тракте.

Отметим, что акустические системы, которые используются для профессионального озвучивания (особенно в условиях дискотек) часто вынуждены работать на высоких мощностях. Во время работы нагрев звуковой катушки динамика может достигать 200 градусов, а элементов магнитной цепи - 70 градусов. Долговременная работа на предельных режимах приводит к тому, что динамики "горят". Это может быть вызвано превышением допустимой электрической мощности, подаваемой на динамик, а также неисправностью усилителя. Во многом, сохранность комплекта зависит от квалификации диджея. В связи с этим, какой бы динамик вы не выбрали, необходимо учитывать доступность ремкомплектов. При этом ситуация осложняется ещё и тем, что как правило единовременно сгорает не один динамик, а несколько, что выводит из строя весь комплект. Учитывая всё вышесказанное, заключим, что вопрос о сроках и стоимости поставки ремкомплектов также крайне важен на этапе выбора динамиков для АС.