Гармоники фурье. Ряд фурье. Графоаналитическое разложение кривых в ряд Фурье

Как известно, в электроэнергетике в качестве стандартной формы для токов и напряжений принята синусоидальная форма. Однако в реальных условиях формы кривых токов и напряжений могут в той или иной мере отличаться от синусоидальных. Искажения форм кривых этих функций у приемников приводят к дополнительным потерям энергии и снижению их коэффициента полез¬ного действия. Синусоидальность формы кривой напряжения генератора является одним из показателей качества электрической энергии как товара.

Возможны следующие причины искажения формы кривых токов и напряжений в сложной цепи:

1) наличие в электрической цепи нелинейных элементов, параметры которых зависят от мгновенных значений тока и напряжения , (например, выпрямительные устройства, электросварочные агрегаты и т. д.);

2) наличие в электрической цепи параметрических элементов, параметры которых изменяются во времени ;

3) источник электрической энергии (трехфазный генератор) в силу конструктивных особенностей не может обеспечить идеальную синусоидальную форму выходного напряжения;

4) влияние в комплексе перечисленных выше факторов.

Нелинейные и параметрические цепи рассматриваются в отдельных главах курса ТОЭ. В настоящей главе исследуется поведение линейных электрических цепей при воздействии на них источников энергии с несинусоидальной формой кривой.

Из курса математики известно, что любая периодическая функция времени f(t), удовлетворяющая условиям Дирихле, может быть представлена гармоническим рядом Фурье:

Здесь А0 – постоянная составляющая, Ak*sin(kωt+ αk) k-я гармоническая составляющая или сокращенно k-я гармоника. 1-я гармоника называется основной, а все последующие - высшими.

Амплитуды отдельных гармоник Ак не зависят от способа разложения функции f(t) в ряд Фурье, в то же время начальные фазы отдельных гармоник αk зависят от выбора начала отсчета времени (начала координат).

Отдельные гармоники ряда Фурье можно представить в виде суммы синусной и косинусной составляющих:

Тогда весь ряд Фурье получит вид:

Соотношения между коэффициентами двух форм ряда Фурье имеют вид:

Если k-ю гармонику и ее синусную и косинусную составляющие заменить комплексными числами, то соотношение между коэффициентами ряда Фурье можно представить в комплексной форме:

Если периодическая несинусоидальная функция времени задана (или может быть выражена) аналитически в виде математического уравнения, то коэффициенты ряда Фурье определяются по формулам, известным из курса математики:


На практике исследуемая несинусоидальная функция f(t) обычно задается в виде графической диаграммы (графически) (рис. 46.1) или в виде таблицы координат точек (таблично) в интервале одного периода (табл. 1). Чтобы выполнить гармонический анализ такой функции по приведенным выше уравнениям, ее необходимо предварительно заменить математическим выражением. Замена функции, заданной графически или таблично математическим уравнением, получила название аппроксимации функции.



В настоящее время гармонический анализ несинусоидальных функций времени f(t) выполняется, как правило, на ЭВМ. В простейшем случае для математического представления функции применяется кусочно-линейная аппроксимация. Для этого вся функция в интервале одного полного периода разбивается на M=20-30 участков так, чтобы отдельные участки были по возможности ближе к прямым линиям (рис. 1). На отдельных участках функция аппроксимируется уравнением прямой fm(t)=am+bm*t, где коэффициенты аппроксимации (am, bm) определяются для каждого участка через координаты его конечных точек, например, для 1-го участка получим:

Период функции Т разбивается на большое число шагов интегрирования N, шаг интегрирования Δt=h=T/N, текущее время ti=hi, где i - порядковый номер шага интегрирования. Определенные интегралы в формулах гармонического анализа заменяются соответствующими суммами, их подсчет выполняется на ЭВМ по методу трапеций или прямоугольников, например:

Для определения амплитуд высших гармоник с достаточной точностью (δ≤1%) число шагов интегрирования должно составлять не менее 100k, где k - номер гармоники.

В технике для выделения отдельных гармоник из несинусоидальных напряжений и токов применяют специальные приборы, называемые гармоническими анализаторами.

В предыдущей главе мы познакомились с другой точкой зрения на колеблющуюся систему. Мы видели, что в струне возникают различные собственные гармоники и что любое частное колебание, которое только возможно получить из начальных условий, можно рассматривать как составленную в надлежащей пропорции комбинацию нескольких одновременно осциллирующих собственных гармоник. Для струны мы нашли, что собственные гармоники имеют частоты ω 0 , 2ω 0 , Зω 0 , ... . Поэтому наиболее общее движение струны складывается из синусоидальных колебаний основной частоты ω 0 , затем второй гармоники 2ω 0 , затем третьей гармоники Зω 0 и т. д. Основная гармоника повторяется через каждый период T 1 =2π/ω 0 , вторая гармоника — через каждый период T 2 =2π/2ω 0 ; она повторяется также и через каждый период Т 1 =2Т 2 , т. е. после двух своих периодов. Точно таким же образом через период Т 1 повторяется и третья гармоника. В этом отрезке укладываются три ее периода. И снова мы понимаем, почему задетая струна через период Т 1 полностью повторяет форму своего движения. Так получается музыкальный звук.

До сих пор мы говорили о движении струны. Однако звук, который представляет собой движение воздуха, вызванное движением струны, тоже должен состоять из тех же гармоник, хотя здесь мы уже не можем говорить о собственных гармониках воздуха. К тому же относительная сила различных гармоник в воздухе может быть совсем другой, чем в струне, особенно если струна «связана» с воздухом посредством «звучащей доски». Разные гармоники по-разному связаны с воздухом.

Если для музыкального тона функция f (t ) представляет давление воздуха в зависимости от времени (скажем, такая, как на фиг. 50.1,6), то можно ожидать, что f (t ) записывается в виде суммы некоторого числа простых гармонических функций от времени (подобных cos ωt ) для каждой из различных гармонических частот. Если период колебаний равен Т, то основная угловая частота будет ω=2π/T, а следующие гармоники будут 2ω, Зω и т. д.

Здесь появляется небольшое усложнение. Мы не вправе ожидать, что для каждой частоты начальные фазы обязательно будут равны друг другу. Поэтому нужно пользоваться функциями типа cos (ωt + φ)- Вместо этого, однако, проще использовать для каждой частоты как синус, так и косинус. Напомним, что

а поскольку φ — постоянная, то любые синусоидальные колебания с частотой со могут быть записаны в виде суммы членов, в один из которых входит sin ωt, а в другой — cos ωt.

Итак, мы приходим к заключению, что любая периодическая функция f (t ) с периодом Т математически может быть записана в виде

где ω=2π/T , а а и b — числовые постоянные, указывающие, с каким весом каждая компонента колебания входит в общее колебание f (t ). Для большей общности мы добавили в нашу формулу член с нулевой частотой а 0 , хотя обычно для музыкальных тонов он равен нулю. Это просто сдвиг средней величины звукового давления (т. е. сдвиг «нулевого» уровня). С этим членом наша формула верна для любого случая. Уравнение (50.2) схематически показано на фиг. 50.2. Амплитуды гармонических функций а n и b n выбираются по специальному правилу. На рисунке они показаны только схематически без соблюдения масштаба. [Ряд (50.2) называется рядом Фурье для функций f (t ).]

Мы сказали, что любую периодическую функцию можно написать в таком виде. Следует внести небольшую поправку и подчеркнуть, что в такой ряд можно разложить вообще любую звуковую волну или любую функцию, с которой мы сталкиваемся в физике. Математики, конечно, могут придумать такую функцию, что ее нельзя будет составить из простых гармонических (например, функцию, которая «заворачивает» назад, так что для некоторых величин t она имеет два значения!). Однако здесь нам не стоит беспокоиться о таких функциях.

Общие описания

Французский математик Фурье (Ж. Б. Ж. Фурье 1768-1830) провоз гласил достаточно смелую для своего времени гипотезу. Согласно этой гипотезе не существует функции, которую нельзя было бы разложить в тригонометрический ряд. Однако, к сожалению, в то время такая идея не была воспринята всерьез. И это естественно. Сам Фурье не смог привести убедительных доказательств, а интуитивно поверить в гипотезу Фурье очень трудно. Особенно нелегко представить тот факт, что при сложении простых функций, подобных тригонометрическим, воспроизводятся функции, совершенно на них не похожие. Но если предположить, что гипотеза Фурье верна, то периодический сигнал любой формы можно разложить на синусоиды различных частот, или наоборот, посредством соответствующего сложения синусоид с разными частотами возможно синтезировать сигнал какой угодно формы. Следовательно, если эта теория верна, то ее роль в обработке сигналов может быть очень велика. В этой главе первым делом попы­таемся проиллюстрировать правильность гипотезы Фурье.

Рассмотрим функцию

f(t)= 2sin t – sin 2t

Простой тригонометрический ряд

Функция является суммой тригонометрических функций, иными словами, представлена в виде тригонометрического ряда из двух членов. Добавим одно слагаемое и создадим новый ряд из трех членов

Снова добавив несколько слагаемых, получим новый тригонометрический ряд из десяти членов:

Коэффициенты этого тригонометрического ряда обозначим как b k , где k - целые числа. Если внимательно посмотреть на последнее соотношение, то видно, что коэффициенты можно описать следующим выражением:

Тогда функцию f(t) можно представить следующим образом:

Коэффициенты b k - это амплитуды синусоид с угловой частотой к. Иначе говоря, они задают величину частотных составляющих.

Рассмотрев случай, когда верхний индекс к равен 10, т.е. М= 10. Увеличив значение М до 100, получим функцию f(t).

Эта функция, будучи тригонометрическим рядом, по форме приближается к пилообразному сигналу. И, похоже, гипотеза Фурье совершенно верна по отноше­нию к физическим сигналам, с которыми мы имеем дело. К тому же в этом примере форма сигнала не гладкая, а включает точки разрыва. И то, что функция воспроизводится даже в точках разрыва, выглядит многообещающим.

В физическом мире действительно много явлений, которые можно представить как суммы колебаний различных частот. Типичным примером этих явлений является свет. Он представляет собой сумму электромагнитных волн с длиной волны от 8000 до 4000 ангстрем (от красного цвета свечения до фиолетового). Вы, конечно, знаете, что если белый свет пропустить через призму, то появится спектр из семи чистых цветов. Это происходит потому, что коэффициент преломления стекла, из которого сделана призма, изменяется в зависимости от длины электромагнитной волны. Это как раз и является доказательством того, что белый свет - это сумма световых волн различной дли­ны. Итак, пропустив свет через призму и получив его спектр, мы можем проанализировать свойства света, исследуя цветовые комбинации. Подобно этому, посредством разложения принятого сигнала на различные частотные составляющие, мы можем узнать, как возник первоначальный сигнал, по какому пути он следовал или, наконец, какому внешнему влиянию он подвергался. Одним словом, мы можем получить информацию для выяснения происхождения сигнала.

Подобный метод анализа называется спектральным анализом или анализом Фурье.

Рассмотрим следующую систему ортонормированных функций:

Функцию f(t) можно разложить по этой системе функций на отрезке [-π, π] следующим образом:

Коэффициенты α k , β k , как было показано ранее, можно выразить через скалярные произведения:

В общем виде функцию f(t) можно представить следующим образом:

Коэффициенты α 0 , α k , β k называют коэффициентами Фурье, а подобное представление функции называется разложением в ряд Фурье. Иногда такое представление называют действительным разложением в ряд Фурье, а коэффициенты - действительными коэффициентами Фурье. Термин «действительный» вводится для того, чтобы отличить представленное разложение от разложения в ряд Фурье в комплексной форме.

Как уже было сказано ранее, произвольную функцию можно разложить по системе ортогональных функций, даже если функции из этой системы не представляются в виде тригонометрического ряда. Обычно под разложением в ряд Фурье подразумевается разложение в тригонометрический ряд. Если коэффициенты Фурье выразить через α 0 , α k , β k получим:

Поскольку при k = 0 coskt = 1, то константа а 0 /2 выражает общий вид коэффициента а k при k = 0.

В соотношении (5.1) колебание самого большого периода, представленное суммой cos t и sin t, называют колебанием основной частоты или первой гармоникой. Колебание с периодом, равным половине основного периода, называют второй гармоникой. Колебание с периодом, равным 1/3 основного периода, называют третьей гармоникой и т.д. Как видно из соотношения (5.1) a 0 является постоянной величиной, выражающей среднее значение функции f{t) . Если функция f(t) представляет собой электрический сигнал, то а 0 представляет его постоянную составляющую. Следовательно, все остальные коэффициенты Фурье выражают его переменные составляющие.

На Рис. 5.2 представлен сигнал и его разложение в ряд Фурье: на постоянную составляющую и гармоники различных частот. Во временной области, где переменной величиной является время, сигнал выражается функцией f(t), а в частотной области, где переменной величиной является частота, сигнал представляется коэффициен­тами Фурье (a k , b к).

Первая гармоника является периодической функцией с периодом 2 π.Прочие гармоники также имеют период, кратный 2 π. Исходя из этого, при формировании сигнала из составляющих ряда Фу­рье мы, естественно, получим периодическую функцию с периодом 2 π. А если это так, то разложение в ряд Фурье - это, собственно говоря, способ представления периодических функций.

Разложим в ряд Фурье сигнал часто встречающегося вида. Например, рассмотрим упомянутую ранее пилообразную кривую (Рис. 5.3). Сигнал такой формы на отрезке - π < t < π я выражается функцией f(t) = t , поэтому коэффициенты Фурье могут быть выражены следующим образом:

Пример 1.

Разложение в ряд Фурье сигнала пилообразной формы

f(t) = t,

Преобразование Фурье представляет собой наиболее широко используемое средство преобразовать произвольную функцию от времени в набор ее частотных составляющих на плоскости комплексных чисел. Это преобразование может быть применено для апериодических функций для определения их спектров, и в этом случае комплексный оператор s может быть заменен на усо:

С целью определения наиболее интересных частот может быть использовано численное интегрирование на комплексной плоскости.

Для ознакомления с основами поведения этих интегралов рассмотрим несколько примеров. На Рис. 14.6 (слева) приведен импульс единичной площади во временной области и его спектральный состав; в центре - импульс такой же площади, но большей амплитуды, а справа - амплитуда импульса бесконечна, однако его площадь по-прежнему равна единице. Правая картинка особенно интересна тем, что спектр импульса с нулевой шириной содержит все частоты с равными амплитудами.


Рис. 14.6.

В 1822 г. французский математик Ж. Б. Ж. Фурье (J. В. J. Fourier) показал в своей работе, посвященной вопросам теплопроводности, что любая периодическая функция может быть разложена на исходные компоненты, включающие частоту повторения и набор гармоник этой частоты, причем каждая из гармоник имеет свою амплитуду и фазу по отношению к частоте повторения. Основные формулы, используемые при Фурье-преобразова- нии, таковы:

где Л 0 представляет собой компоненту постоянного тока, а А„ и В„ - гармоники основной частоты порядка п, находящиеся соответственно в фазе и противофазе с ней. Функция f(x), таким образом, является суммой этих гармоник и /1 0 .

В случаях, когда /(.г) симметрична относительно я/2, т. е./(х) на области от я до 2л = -/(х) на области от 0 до я, и отсутствует компонента постоянного тока, формулы Фурье-нреобразования упрощаются до:

где п - 1,3,5, 7....

Все гармоники являются синусоидами, только часть из них находится в фазе, а часть - в противофазе с основной частотой. Большинство форм сигналов, встречающихся в силовой электронике, могут быть разложены на гармоники этим манером.

Если преобразование Фурье применить к прямоугольным импульсам длительностью 120°, то гармоники будут составлять набор порядка k = 6п ± 1, где п - одно из целых чисел. Амплитуда каждой гармоники h по отношению к первой связана с ее номером соотношением h = /k. При этом первая гармоника будет иметь амплитуду, в 1.1 раза большую, чем амплитуда прямоугольного сигнала.

Преобразование Фурье выдает амплитудное значение для каждой гармоники, но, так как все они являются синусоидальными, среднеквадратичное значение получится просто делением соответствующей амплитуды на корень из 2. Среднеквадратичное значение сложного сигнала представляет собой корень квадратный из суммы квадратов среднеквадратичных значений каждой гармоники, включая первую.

При работе с повторяющимися импульсными функциями полезно рассмотреть рабочий цикл. Если повторяющиеся импульсы на Рис. 14.7 имеют среднеквадратичное значение X за время А , то среднеквадратичное значение за время В будет равно Х(Л/В) { 2 . Таким образом, среднеквадратичное значение повторяющихся импульсов пропорционально корню квадратному из значения рабочего цикла. Применив этот принцип к прямоугольным импульсам длительностью 120° (рабочий цикл 2/3) с единичной амплитудой, получим среднеквадратичное значение (2/3) 12 = 0.8165.


Рис. 14.7.

импульсов

Интересно проверить этот результат путем суммирования гармоник, соответствующих упомянутой последовательности прямоугольных импульсов. В Табл. 14.2 приведены результаты этого суммирования. Как видно, все совпадает.

Таблица 14.2. Результаты суммирования гармоник, соответствующих

периодическому сигналу с рабочим циклом 2/3 и единичной амплитудой

Для целей сравнения можно сгруппировать любой набор гармоник и определить соответствующий общий уровень гармонических искажений. Среднеквадратичное значение сигнала при этом определяется но формуле

где h - амплитуда первой (основной) гармоники, a h„ - амплитуда гармоник порядка п > 1.

Компоненты, ответственные за искажения, могут быть записаны отдельно как

где п > 1. Тогда

где Fund - первая гармоника, а коэффициент нелинейных искажений (THD ) получится равным D/Fund.

Хотя анализ прямоугольной последовательности импульсов весьма интересен, он редко применяется в реальном мире. Коммутационные эффекты и другие процессы делают прямоугольные импульсы больше похожими на трапецеидальные, или, в случае с преобразователями, с передним фронтом, описываемым выражением 1 - cos(0) и задним фронтом, описываемым зависимостью cos(0), где 0 Увеличение времен нарастания и спада прямоугольных импульсов «смягчает» набор соответствующих гармоник, так что амплитуда гармоник высокого порядка уменьшается пропорционально (1/Аг) вместо (1 /к) при более низких частотах. При отображении зависимости этих амплитуд от частоты на бумаге с двойным логарифмическим масштабом наклон соответствующих участков этого графика составляет -2 и - 1. Для систем с типовыми значениями реактанса изменение наклона примерно приходится на частоты от 11-й до 35-й гармоники сетевой частоты, причем при увеличении реактанса или тока в системе частота изменения наклона снижается. Практический результат от всего этого состоит в меньшей значимости высших гармоник, чем можно подумать.

Хотя увеличение реактанса способствует уменьшению гармоник высших порядков, обычно это не выполнимо. Более предпочтительным для уменьшения гармонических составляющих в потребляемом токе является увеличение числа импульсов при выпрямлении или преобразовании напряжения, достигаемое сдвигом фаз. Применительно к трансформаторам эта тема была затронута в гл. 7. Если тиристорный преобразователь или выпрямитель питается от обмоток трансформатора, соединенных звездой п треугольником, а выходы преобразователя или выпрямителя соединены последовательно или параллельно, то получается 12-нульсационное выпрямление. Номера гармоник в наборе теперь получаются k = 12п ± 1 взамен k = 6w ± 1, где п - одно из целых чисел. Взамен гармоник 5-го и 7-го порядка теперь появляются гармоники 11-го и 13-го порядков, амплитуда которых существенно меньше. Вполне возможно применение еще большего числа пульсаций, и, например, в больших источниках питания для электрохимических установок используются 48-пульсационпые системы. Так как в больших выпрямителях и преобразователях используются наборы соединенных параллельно диодов или тиристоров, дополнительная стоимость фазосдвигающих обмоток в трансформаторе в основном определяет и его цену. На Рис. 14.8 показаны преимущества 12-пульсационной схемы перед 6-иульсационной. Гармоники 11-го и 13-го порядка в 12-нульсаци- онной схеме имеют типовое значение амплитуды, равное примерно 10% от первой гармоники. В схемах с большим числом пульсаций гармоники имеют порядок k = рп ± 1, где р - число пульсаций.

Для интереса отметим, что пары наборов гармоник, которые просто сдвинуты друг относительно друга на 30°, не взаимоуничтожаются в 6- пульсационной схеме. Токи этих гармоник проникают назад через трансформатор; таким образом, требуется дополнительный сдвиг фаз для получения возможности их взаимного уничтожения.

Не все гармоники находятся в фазе с первой. Например, в трехфазном наборе гармоник, соответствующем последовательности прямоугольных импульсов 120°, фазы гармоник меняются в соответствии с последовательностью -5-я, +7-я, -11-я, +13-я и т. д. При разбалансировке в трехфазной цепи могут возникать однофазные компоненты, что влечет за собой утраи- вание гармоник с нулевым фазовым сдвигом.


Рис. 14.8.

Изолирующие трансформаторы часто рассматриваются как панацея от проблем с гармониками. Эти трансформаторы добавляют некоторый реактанс в систему и тем самым способствуют снижению уровня высших гармоник, однако, кроме подавления токов нулевой последовательности и электростатической развязки, проку от них немного.

Главная > Закон

ЦЕПИ НЕСИНУСОИДАЛЬНОГО ТОКА

До сих пор мы изучали цепи синусоидального тока, однако закон изменения тока во времени может отличаться от синусоидального. В этом случае имеют место цепи несинусоидального тока. Все несинусоидальные токи делятся на три группы: периодические, т.е. имеющие период Т (рис.6.1,а), непериодические (рис.6.1,б) и почти периодические, имеющие периодически изменяющуюся огибающую (Т о) и период следования импульсов (Т и) (рис.6.1,в). Есть три способа получения несинусоидальных токов: а) в цепи действует несинусоидальная ЭДС; б) в цепи действует синусоидальная ЭДС, но один или несколько элементов цепи являются нелинейными; в) в цепи действует синусоидальная ЭДС, но параметры одного или нескольких элементов цепи периодически изменяются во времени. На практике чаще всего используется способ б). Наибольшее распространение несинусоидальные токи получили в устройствах радиотехники, автоматики, телемеханики и вычислительной техники, где часто встречаются импульсы самой разнообразной формы. Встречаются несинусоидальные токи и в электроэнергетике. Мы будем рассматривать только периодические несинусоидальные напряжения и токи, которые могут быть разложены на гармонические составляющие.

Разложение периодических несинусоидальных кривых в тригонометрический ряд Фурье

Явления, происходящие в линейных цепях при периодических несинусоидальных напряжениях и токах, проще всего поддаются расчету и исследованию, если несинусоидальные кривые раскладывать в тригонометрический ряд Фурье. Из математики известно, что периодическая функция f(ωt) , удовлетворяющая условиям Дирихле, т.е. имеющая на всяком конечном интервале времени конечное число разрывов только первого рода и конечное число максимумов и минимумов, может быть разложена в тригонометрический ряд Фурье

f(ωt)=A o +
sinωt+
sin2ωt+
sin3ωt+···+
cosωt+
cos2ωt+
cos3ωt+···=

A o +
.

Здесь: A o – постоянная составляющая или нулевая гармоника;
-
амплитуда синусной составляющей k -й гармоники;
-
амплитуда косинусной составляющей k -й гармоники. Они определяются по следующим формулам

Так как где как следует из векторной диаграммы (рис.6.2) , то получаем

.

Входящие в это выражение слагаемые называются гармониками. Различают четные (k – четное) и нечетные гармоники. Первую гармонику называют основной, а остальные – высшими. Последняя форма ряда Фурье удобна в том случае, когда требуется знать процентное содержание каждой гармоники. Эта же форма ряда Фурье применяется при расчете цепей несинусоидального тока. Хотя теоретически ряд Фурье содержит бесконечно большое число слагаемых, однако он как правило быстро сходится. а сходящимся рядом можно выразить заданную функцию с любой степенью точности. На практике достаточно взять небольшое число гармоник (3-5) для получения точности расчетов в несколько процентов.

Особенности разложения в ряд Фурье кривых, обладающих симметрией

1. Кривые, среднее за период значение которых равно нулю, не содержат постоянной составляющей (нулевой гармоники). 2
f(ωt)=-f(ωt+π) , то она называется симметричной относительно оси абсцисс. Этот вид симметрии легко определить по виду кривой: если сместить её на полпериода по оси абсцисс, зеркально отобразить и при этом она сольётся с исходной кривой (рис.6.3), то симметрия имеется. При разложении такой кривой в ряд Фурье в последнем отсутствует постоянная составляющая и все четные гармоники, поскольку они не удовлетворяют условию f(ωt)=-f(ωt+π).

f(ωt)=sin(ωt+ψ 1 )+sin(3ωt+ψ 3 )+
sin(5ωt +ψ
5 )+···.

3
. Если функция удовлетворяет условию f(ωt)=f(-ωt) , то она называется симметричной относительно оси ординат (четной). Этот вид симметрии легко определить по виду кривой: если кривую, лежащую левее оси ординат, зеркально отобразить и она сольется с исходной кривой, то симметрия имеется (рис.6.4). При разложении такой кривой в ряд Фурье в последнем будут отсутствовать синусные составляющие всех гармоник (= f(ωt)=f(-ωt). Следовательно, для таких кривых

f(ωt)=А о +
cosωt+
cos2ωt+
cos3ωt+···.

4
. Если функция удовлетворяет условию f(ωt)=-f(-ωt) , то она называется симметричной относительно начала координат (нечетной). Наличие данного вида симметрии легко определить по виду кривой: если кривую, лежащую левее оси ординат развернуть относительно точки начала координат и она сольется с исходной кривой, то симметрия имеется (рис.6.5). При разложении такой кривой в ряд Фурье в последнем будут отсутствовать косинусные составляющие всех гармоник (
=
0), поскольку они не удовлетворяют условию f(ωt)=-f(-ωt). Следовательно, для таких кривых

f(ωt)=
sinωt+
sin2ωt+
sin3ωt+···.

При наличии какой-либо симметрии в формулах для и можно брать интеграл за полпериода, но результат удваивать, т.е. пользоваться выражениями

В кривых бывают и несколько видов симметрии одновременно. Для облегчения вопроса о гармонических составляющих в этом случае заполним таблицу

Вид симметрии

Аналитическое выражение

1. Оси абсцисс

f(ωt)=-f(ωt+π)

Только нечетные

2. Оси ординат

f(ωt)=f(-ωt)

3. Начала координат

f(ωt)=-f(-ωt)

4. Оси абсцисс и оси ординат

f(ωt)=-f(ωt+π)=f(-ωt)

Нечетные

5. Оси абсцисс и начала координат

f(ωt)=-f(ωt+π)=-f(-ωt)

Нечетные

Раскладывая кривую в ряд Фурье, следует предварительно выяснить, не обладает ли она каким-либо видом симметрии, наличие которой позволяет заранее предсказать, какие гармоники будут в ряде Фурье и не выполнять лишней работы.

Графоаналитическое разложение кривых в ряд Фурье


Когда несинусоидальная кривая задана графиком или таблицей и не имеет аналитического выражения, для определения её гармоник прибегают к графоаналитическому разложению. Оно основано на замене определенного интеграла суммой конечного числа слагаемых. С этой целью период функции f(ωt) разбивают на n равных частей Δωt= 2π/n (рис.6.6). Тогда для нулевой гармоники

где: р – текущий индекс (номер участка), принимающий значения от 1 до n ; f р (ωt) – значение функции f(ωt) при ωt=р· Δωt (см. рис.6.6). Для амплитуды синусной составляющей k –ой гармоники

Для амплитуды косинусной составляющей k –ой гармоники

Здесь sin p kωt и cos p kωt - значения sinkωt и coskωt при ωt=р· . В практических расчетах обычно принимают n =18 (Δωt= 20˚) или n =24 (Δωt= 15˚). При графоаналитическом разложении кривых в ряд Фурье еще важнее чем при аналитическом выяснить, не обладает ли она каким-либо видом симметрии, наличие которых существенно уменьшает объем вычислительной работы. Так, формулы для и при наличии симметрии принимают вид

При построении гармоник на общем графике необходимо учитывать, что масштаб по оси абсцисс для k –ой гармоники в k раз больше, чем для первой.

Максимальное, среднее и действующее значения несинусоидальных величин

Периодические несинусоидальные величины, помимо своих гармонических составляющих, характеризуются максимальным, средним и действующим значениями. Максимальное значение А m – это наибольшее в течение периода значение модуля функции (рис.6.7). Среднее по модулю значение определяется так


.

Если кривая симметрична относительно оси абсцисс и в течение полупериода ни разу не изменяет знак, то среднее по модулю значение равно среднему значению за полпериода

,

причем в этом случае начало отсчета времени должно быть выбрано так, чтобы f(0)= 0.Если функция за весь период ни разу не изменяет знак, то её среднее по модулю значение равно постоянной составляющей. В цепях несинусоидального тока под величинами ЭДС, напряжений или токов понимают их действующие значения, определяемые по формуле

.

Если кривая разложена в ряд Фурье, то её действующее значение может быть определено следующим образом

Поясним получение результата. Произведение синусоид разной частоты ( и ) представляет собой гармоническую функцию, а интеграл за период от любой гармонической функции равен нулю. Интеграл, находящийся под знаком первой суммы, определялся в цепях синусоидального тока и там было показано его значение. Следовательно,

.

Из этого выражения вытекает, что действующее значение периодических несинусоидальных величин зависит только от действующих значений её гармоник и не зависит от их начальных фаз ψ k . Приведем пример. Пусть u =120
sin(314t +45˚)-50sin(3·314t -75˚) B . Его действующее значение

Бывают случаи, когда среднее по модулю и действующее значения несинусоидальных величин могут быть рассчитаны на основании интегрирования аналитического выражения функции и тогда нет необходимости раскладывать кривую в ряд Фурье. В электроэнергетике, где кривые преимущественно симметричны относительно оси абсцисс, для характеристики их формы используется ряд коэффициентов. Наибольшее применение получили три из них: коэффициент амплитуды k а, коэффициент формы k ф и коэффициент искажения k и. Они определяются так: k а =A m /A ; /A ср; k и =A 1 /A. Для синусоиды они имеют следующие значения: k а =; k ф =πA m / 2A m ≈1.11; 1. Для кривой прямоугольной формы (рис.6.8,а) коэффициенты таковы: k а =1; k ф =1; k и =1.26/. Для кривой заостренной (пикообразной) формы (рис.6.8,б) значения коэффициентов следующие: k а > и тем выше, чем более пикообразной является её форма; k ф >1.11 и тем выше, чем заостреннее кривая; k и <1 и чем более заостренная кривая, тем меньше. Как видим рассмотренные коэффициенты в определенной степени характеризуют форму кривой. Укажем одно из практических применений коэффициента искажения. Кривые напряжения промышленных сетей обычно отличаются от идеальной синусоиды. В электроэнергетике вводится понятие практически синусоидальной кривой. По ГОСТ напряжение промышленных сетей считается практически синусоидальным, если наибольшее отличие соответствующих ординат истинной кривой и её первоё гармоники не превышает 5% от амплитуды основной гармоники (рис.6.9). Измерение несинусоидальных величин приборами различных систем дает неодинаковые результаты. Амплитудные электронные вольтметры измеряют максимальные значения. Магнитоэлектрические приборы реагируют только на постоянную составляющую измеряемых величин. Магнитоэлектрические приборы с выпрямителем измеряют среднее по модулю значение. Приборы всех остальных систем измеряют действующие значения.

Расчет цепей несинусоидального тока

Если в цепи действует один или несколько источников с несинусоидальными ЭДС, то её расчет распадается на три этапа. 1. Разложение ЭДС источников на гармонические составляющие. Как это делать рассмотрено выше. 2. Применение принципа наложения и расчет токов и напряжений в цепи от действия каждой составляющей ЭДС в отдельности. 3. Совместное рассмотрение (суммирование) решений, полученных в п.2. Суммирование составляющих в общем виде чаще всего затруднено и не всегда необходимо, так как на основании гармонических составляющих можно судить как о форме кривой, так и об основных величинах, характеризующих её. О
сновным этапом является второй. Если несинусоидальная ЭДС представлена рядом Фурье, то такой источник можно рассматривать как последовательное соединение источника постоянной ЭДС и источников синусоидальных ЭДС с различными частотами (рис.6.10). Применяя принцип наложения и рассматривая действие каждой ЭДС в отдельности, можно определить составляющие токов во всех ветвях цепи. Пусть E o создает I o , e 1 - i 1 , e 2 - i 2 и т.д. Тогда фактический ток i =I o +i 1 +i 2 +··· . Следовательно, расчет цепи несинусоидального тока сводится к решению одной задачи с постоянной ЭДС и ряда задач с синусоидальными ЭДС. При решении каждой из этих задач необходимо учитывать, что для различных частот индуктивное и емкостное сопротивления неодинаковы. Индуктивное сопротивление прямо пропорционально частоте, поэтому оно для k –й гармоники x Lk =kωL =kx L1 , т.е. для k –й гармоники оно в k раз больше, чем для первой. Емкостное сопротивление обратно пропорционально частоте, поэтому оно для k –й гармоники x Сk =1/kωС =x С1 /k , т.е. для k –й гармоники оно в k раз меньше, чем для первой. Активное сопротивление в принципе тоже зависит от частоты из-за поверхностного эффекта, однако при малых сечениях проводников и при невысоких частотах поверхностный эффект практически отсутствует и допустимо считать, что активное сопротивление для всех гармоник одинаково. Если несинусоидальное напряжение подведено непосредственно к емкости, то для k –й гармоники тока

Чем выше номер гармоники, тем меньше для нее сопротивление емкости. Поэтому даже если амплитуда напряжения гармоники высокого порядка составляет незначительную долю от амплитуды первой гармоники, она все же может вызвать ток, соизмеримый с током основной гармоники или превышающий его. В связи с этим даже при напряжении, близком к синусоидальному ток в емкости может оказаться резко несинусоидальным (рис.6.11). По этому поводу говорят, что емкость подчеркивает токи высоких гармоник. Если несинусоидальное напряжение подведено непосредственно к индуктивности, то для k –й гармоники тока

.

С
увеличением порядка гармоники возрастает индуктивное сопротивление. Поэтому в токе через индуктивность высшие гармоники представлены в меньшей степени, чем в напряжении на ее зажимах. Даже при резко несинусоидальном напряжении кривая тока в индуктивности нередко приближается к синусоиде (рис.6.12). Поэтому говорят, что индуктивность приближает кривую тока к синусоиде. При расчете каждой гармонической составляющей тока можно пользоваться комплексным методом и строить векторные диаграммы, однако недопустимо производить геометрическое суммирование векторов и сложение комплексов напряжений или токов разных гармоник. Действительно, векторы, изображающие скажем токи первой и третьей гармоник, вращаются с разными скоростями (рис.6.13). Поэтому геометрическая сумма этих векторов дает мгновенное значение их суммы только при ω t =0 и в общем случае смысла не имеет.

Мощность несинусоидального тока

Так же как и в цепях синусоидального тока будем вести речь о мощностях, потребляемых пассивным двухполюсником. Под активной мощностью тоже понимают среднее за период значение мгновенной мощности

Пусть напряжение и ток на входе двухполюсника будут представлены рядами Фурье

Подставим значения u и i в формулу Р

Результат получен с учетом того, что интеграл за период от произведения синусоид различных частот равен нулю, а интеграл за период от произведения синусоид одинаковой частоты определялся в разделе цепей синусоидального тока. Таким образом, активная мощность несинусоидального тока равна сумме активных мощностей всех гармоник. Ясно, что Р k можно определять по любым известным формулам. По аналогии с синусоидальным током для несинусоидального вводится понятие полной мощности, как произведение действующих значений напряжения и тока, т.е. S=UI . Отношение Р к S называется коэффициентом мощности и приравнивается косинусу некоторого условного угла θ , т.е. cosθ =P/S . На практике очень часто несинусоидальные напряжения и токи заменяют эквивалентными синусоидами. При этом нужно выполнить два условия: 1) действующее значение эквивалентной синусоиды должно равняться действующему значению заменяемой величины; 2) угол между эквивалентными синусоидами напряжения и тока θ должен быть таким, чтобы UI cosθ равнялось бы активной мощности Р . Следовательно, θ - это угол между эквивалентными синусоидами напряжения и тока. Обычно действующее значение эквивалентных синусоид близко к действующим значениям основных гармоник. По аналогии с синусоидальным током для несинусоидального вводится понятие реактивной мощности, определяемой как сумма реактивных мощностей всех гармоник

Для несинусоидального тока в отличие от синусоидального S 2 ≠P 2 +Q 2 . Поэтому здесь вводится понятие мощности искажения Т , характеризующей отличие форм кривых напряжения и тока и определяемой так

Высшие гармоники в трехфазных системах

В трехфазных системах обычно кривые напряжения в фазах В и С точно воспроизводят кривую фазы А со сдвигом на треть периода. Так, если u A =f(ωt) , то u В =f(ωt- 2π/ 3), а u С =f(ωt+ 2π/ 3). Допустим фазные напряжения несинусоидальные и разложены в ряд Фурье. Тогда рассмотрим k –ю гармонику во всех трех фазах. Пусть u Ak =U km sin(kωt+ψ k ), тогда получаем u Вk =U km sin(kωt+ψ k -k 2π/ 3) и u Ck =U km sin(kωt+ψ k +k 2π/ 3). Cравнивая эти выражения при различных значениях k , замечаем, что для гармоник, кратных трем (k =3n , n – натуральный ряд чисел, начиная с 0) во всех фазах напряжения в любой момент времени имеют одно и тоже значение и направление, т.е. образуют систему нулевой последовательности. При k =3n+ 1 гармоники образуют систему напряжений, последовательность которой совпадает с последовательностью фактических напряжений, т.е. они образуют систему прямой последовательности. При k =3n- 1 гармоники образуют систему напряжений, последовательность которой противоположна последовательности фактических напряжений, т.е. они образуют систему обратой последовательности. На практике чаще всего отсутствует как постоянная составляющая, так и все четные гармоники, поэтому в дальнейшем ограничимся рассмотрением только нечетных гармоник. Тогда ближайшая гармоника, образующая обратную последовательность, является пятая. В электродвигателях она наносит наибольший вред, поэтому именно с ней ведут беспощадную борьбу. Рассмотрим особенности работы трехфазных систем, вызванные наличием гармоник, кратных трем. 1. При соединении обмоток генератора или трансформатора в треугольник (рис.6.14) по ветвям последнего протекают токи гармоник, кратных трем, даже при отсутствии внешней нагрузки. Действительно, алгебраическая сумма ЭДС гармоник, кратных трем (E 3 , E 6 и т.д.), в треугольнике имеет утроенное значение, в отличие от остальных гармоник, для которых эта сумма равна нулю. Если фазное сопротивление обмотки для третьей гармоники Z 3 , то ток третей гармоники в контуре треугольника будет I 3 =E 3 /Z 3 . Аналогично ток шестой гармоники I 6 =E 6 /Z 6 и т.д. Действующее значение тока, протекающего по обмоткам будет
. Поскольку сопротивления обмоток генератора малы, то ток может достигать больших величин. Поэтому при наличии в фазных ЭДС гармоник, кратных трем, обмотки генератора или трансформатора в треугольник не соединяют. 2. Если соединить обмотки генератора или трансформатора в открытый треугольник (рис.6.155, то на его зажимах будет действовать напряжение, равное сумме ЭДС гармоник, кратных трем, т.е. u BX =3E 3m sin(3ωt+ψ 3)+3E 6m sin(6ωt+ψ 6)+3E 9m sin(9ωt+ψ 9)+···. Его действующее значение

.

Открытый треугольник обычно применяют перед соединением обмоток генератора в обычный треугольник для проверки возможности безаварийной реализации последнего. 3. Линейные напряжения, независимо от схемы соединения обмоток генератора или трансформатора, гармоник, кратных трем, не содержат. При соединении треугольником фазные ЭДС, содержащие гармоники, кратные трем, компенсируются падением напряжения на внутреннем сопротивлении фазы генератора. Действительно, по второму закону Кирхгофа для третьей, например, гармоники для схемы рис.6.14 можно записать U AB3 +I 3 Z 3 =E 3 , откуда получаем U AB3 =0. Аналогично для любой из гармоник, кратных трем. При соединении в звезду линейные напряжения равны разности соответствующих фазных ЭДС. Для гармоник, кратных трем, при составлении этих разностей фазные ЭДС уничтожаются, поскольку они образуют систему нулевой последовательности. Таким образом в фазных напряжениях могут присутствовать составляющие всех гармоник и их действующее значение . В линейных же напряжениях гармоники, кратные трем отсутствуют, поэтому их действующее значение . В связи с этим при наличии гармоник, кратных трем, U л /U ф <
. 4. В схемах без нулевого провода токи гармоник, кратных трем, замыкаться не могут, так как они образуют систему нулевой последовательности и могут замыкаться только при наличии последнего. При этом между нулевыми точками приемника и источника даже в случае симметричной нагрузки появляется напряжение, равное сумме ЭДС гармоник, кратных трем, в чем легко убедиться по уравнению второго закона Кирхгофа с учетом того, что токи указанных гармоник отсутствуют. Мгновенное значение этого напряжения u 0 1 0 =E 3m sin(3ωt+ψ 3)+E 6m sin(6ωt+ψ 6)+E 9m sin(9ωt+ψ 9)+···. Его действующее значение
. 5. В схеме звезда-звезда с нулевым проводом (рис.6.16) по последнему будут замыкаться токи гармоник, кратных трем, даже в случае симметричной нагрузки, если фазные ЭДС содержат указанные гармоники. Учитывая, что гармоники, кратные трем, образуют систему нулевой последовательности, можно записать